9-17考试 数星星

题意

给定一棵树,点带权,m个点对(m条路径),q次询问区间路径并的点权和。

\(n,m,q\le 10^5\) ### 题解

考虑移动右端点。

对每个点维护最后一个包含它的路径编号\(x_i\)

询问就相当于\(x_i\ge l\)的点权和。

操作就相当于链推平。

树剖之后相当于链推平。

用一个类似于珂朵莉树的东西维护连续段就可以了

具体的,用set<pair<int,int> int>来维护连续段和它的\(x\),每次推平l,r就相当于在l-1处拆分,r处拆分,然后把l..r的区间全部删掉,最后加一个l,r的区间就可以了

删区间加区间的时候可以用树状数组维护点权和。

时间复杂度\(O(m\log^2 n)\),为啥?

每次推平最多拆两次(多两个区间),每个区间最多被删一次, 每次最多加一个区间,所以均摊\(O(log(n))\)一次推平(因为要用set定位),又因为要树剖所以就\(O(m\log n)\)次推平。

代码

/*
Author: QAQ Automaton
Lang: C++
Prog: star.cpp
Mail: lk@qaq-am.com
Blog: https://www.qaq-am.com/
*/
#include<bits/stdc++.h>
#define int long long
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define DEBUG printf("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define Debug debug("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define all(x) x.begin(),x.end()
#define x first
#define y second
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const double eps=1e-8;
const double pi=acos(-1.0);
template<class T>int chkmin(T &a,T b){return a>b?a=b,1:0;}
template<class T>int chkmax(T &a,T b){return a<b?a=b,1:0;}
template<class T>T sqr(T a){return a*a;}
template<class T>T mmin(T a,T b){return a<b?a:b;}
template<class T>T mmax(T a,T b){return a>b?a:b;}
template<class T>T aabs(T a){return a<0?-a:a;}
template<class T>int dcmp(T a,T b){return a>b;}
template<int *a>int cmp_a(int x,int y){return a[x]<a[y];}
#define min mmin
#define max mmax
#define abs aabs
namespace io {
	const int SIZE = (1 << 21) + 1;
	char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1, c, qu[55]; int f, qr;
	// getchar
	#define gc() (iS == iT ? (iT = (iS = ibuf) + fread (ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
	// print the remaining part
	inline void flush () {
		fwrite (obuf, 1, oS - obuf, stdout);
		oS = obuf;
	}
	// putchar
	inline void putc (char x) {
		*oS ++ = x;
		if (oS == oT) flush ();
	}
	// input a signed integer
	inline bool read (signed &x) {
		for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;else if(c==EOF)return 0;
		for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
		return 1;
	}

	inline bool read (long long &x) {
		for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;else if(c==EOF)return 0;
		for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
		return 1;
	}
	inline bool read (char &x) {
		x=gc();
		return x!=EOF;
	}
	inline bool read(char *x){
		while((*x=gc())=='\n' || *x==' '||*x=='\r')if(*x==EOF)return 0;
		while(!(*x=='\n'||*x==' '||*x=='\r'||*x==EOF))*(++x)=gc();
		*x=0;
		return 1;
	}
	template<typename A,typename ...B>
	inline bool read(A &x,B &...y){
		return read(x)&&read(y...);
	}
	// print a signed integer
	inline bool write (signed x) {
		if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
		while (x) qu[++ qr] = x % 10 + '0',  x /= 10;
		while (qr) putc (qu[qr --]);
		return 0;
	}

	inline bool write (long long x) {
		if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
		while (x) qu[++ qr] = x % 10 + '0',  x /= 10;
		while (qr) putc (qu[qr --]);
		return 0;
	}
	inline bool write (char x) {
		putc(x);
		return 0;
	}
	inline bool write(const char *x){
		while(*x){putc(*x);++x;}
		return 0;
	}
	inline bool write(char *x){
		while(*x){putc(*x);++x;}
		return 0;
	}
	template<typename A,typename ...B>
	inline bool write(A x,B ...y){
		return write(x)||write(y...);
	}
	//no need to call flush at the end manually!
	struct Flusher_ {~Flusher_(){flush();}}io_flusher_;
}
using io :: read;
using io :: putc;
using io :: write;
int inf;
struct _init_{
    _init_(){
        memset(&inf,0x3f,sizeof(inf));
    }
};
_init_ ___INIT__;
set<pair<pii,int> > st;
int n,m,q;
int bit[100005],a[100005],s[100005],tot;
void add(int x,int y){
	for(;x;x^=x&-x)bit[x]=bit[x]+y;
}
int sum(int x){
	int y=0;
	for(;x<=n;x+=x&-x)y+=bit[x];
	return y;
}

void split(int x){
	if(!x)return;
	auto it=st.upper_bound(make_pair(make_pair(x,inf),inf));	
	--it;
	if(it->x.y>x){
		auto w=*it;
		st.erase(it);
		st.insert(make_pair(make_pair(w.x.x,x),w.y));
		st.insert(make_pair(make_pair(x+1,w.x.y),w.y));
	}
}
void rebuild(int l,int r,int w){
	split(l-1);
	split(r);
	while(1){
		auto it=st.lower_bound(make_pair(make_pair(l,0),0));
		if(it==st.end())break;
		if(it->x.x>r)break;
		add(it->y,s[it->x.x-1]-s[it->x.y]);
		st.erase(it);
	}
	add(w,s[r]-s[l-1]);
	st.insert(make_pair(make_pair(l,r),w));
}
int qs[100005],qt[100005],ans[100005];
vector<pii> qu[100005]; 
vector<int> to[100005];
int siz[100005],hvy[100005],top[100005],dis[100005];
int dfn[100005],fa[100005];
int t;
void dfs(int x,int f){
	siz[x]=1;
	for(auto i:to[x])if(i!=f){
		dfs(i,x);
		siz[x]+=siz[i];
		if(siz[hvy[x]]<siz[i])hvy[x]=i;
	}
}
void dfs2(int x,int f){
	dfn[x]=++t;
	s[t]=s[t-1]+a[x];
	if(hvy[x]){
		top[t+1]=top[t];
		dis[t+1]=dis[dfn[x]];
		dfs2(hvy[x],x);
	}
	for(auto i:to[x])if(i!=f && i!=hvy[x]){
		top[t+1]=t+1;
		fa[t+1]=dfn[x];
		dis[t+1]=dis[dfn[x]]+1;
		dfs2(i,x);
	}
}
void work(int u,int v,int x){
	u=dfn[u];v=dfn[v];
	while(1){
		if(top[u]==top[v]){
			if(u>v)swap(u,v);
			rebuild(u,v,x);
			return;
		}
		if(dis[u]<dis[v])swap(u,v);
		rebuild(top[u],u,x);
		u=fa[top[u]];
	}
}
signed main(){
	freopen("star.in","r",stdin);
	freopen("star.out","w",stdout);
	read(n,m,q);
	for(int i=1;i<=n;++i){read(a[i]);tot+=a[i];}
	st.insert(make_pair(make_pair(1,n),0));
	int u,v;
	for(int i=1;i<n;++i){
		read(u,v);
		to[u].push_back(v);
		to[v].push_back(u);
	}
	dfs(1,0);
	top[1]=1;
	dfs2(1,0);
	for(int i=1;i<=m;++i){
		read(qs[i],qt[i]);
	}
	int l,r;
	for(int i=1;i<=q;++i){
		read(l,r);
		qu[r].push_back(make_pair(l,i));
	}
	for(int i=1;i<=m;++i){
		work(qs[i],qt[i],i);
		for(auto j:qu[i])
			ans[j.y]=sum(j.x);
	}
	for(int i=1;i<=q;++i)write(ans[i],'\n');
	return 0;
}