AGC001F
令\(a_i\)为\(p\)中\(i\)的出现位置\(j\),也就是\(a_{p_j}=j\),那么原操作就可以转化为若\(|a_i-a_{i+1}|\ge K\)可以交换\(a_i,a_{i+1}\)。
原问题(\(p\)字典序最小)就可以转化为\(a\)中1位置尽量小,同时2位置尽量小\(\dots\)
实际上这就相当于\(a\)翻转后字典序最大。
如何理解呢?大概的感性理解下:
令\(a_n\)尽量大,那么\(<a_n\)的数出现位置都会往前。
或者说要使得一个序列字典序尽量大,首先最小的必须尽量靠后,然后是第二小的....
由于\(|a_i-a_{i+1}|\ge K\)才可以交换,那么若\(|a_i-a_j|\lt K\),它们相对顺序就不会变了 。
于是可以连边然后拓扑排序。
但是\(O(n^2)\)的边数有点大。
事实上,\(i\)只需要向最大满足\(j\lt i,0\lt a_j-a_i\lt k\)的\(j\)和最大满足\(j\lt i,0\lt a_i-a_j\lt k\)
的\(j\)连边就好了。
其它满足\(j\lt i,|a_j-a_j|\lt k\)的\(j\)都会被这两个\(j\)中至少一个直接或间接的连边,那么\(i\)也间接向\(j\)连了边。
时间复杂度\(O(n\log n)\)。
/*
Author: CNYALI_LK
LANG: C++
PROG: f.cpp
Mail: cnyalilk@vip.qq.com
*/
#include<bits/stdc++.h>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define DEBUG printf("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define Debug debug("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define all(x) x.begin(),x.end()
#define x first
#define y second
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const signed inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1.0);
template<class T>int chkmin(T &a,T b){return a>b?a=b,1:0;}
template<class T>int chkmax(T &a,T b){return a<b?a=b,1:0;}
template<class T>T sqr(T a){return a*a;}
template<class T>T mmin(T a,T b){return a<b?a:b;}
template<class T>T mmax(T a,T b){return a>b?a:b;}
template<class T>T aabs(T a){return a<0?-a:a;}
template<class T>int dcmp(T a,T b){return a>b;}
template<int *a>int cmp_a(int x,int y){return a[x]<a[y];}
#define min mmin
#define max mmax
#define abs aabs
namespace io {
const int SIZE = (1 << 21) + 1;
char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1, c, qu[55]; int f, qr;
// getchar
#define gc() (iS == iT ? (iT = (iS = ibuf) + fread (ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
// print the remaining part
inline void flush () {
fwrite (obuf, 1, oS - obuf, stdout);
oS = obuf;
}
// putchar
inline void putc (char x) {
*oS ++ = x;
if (oS == oT) flush ();
}
// input a signed integer
inline void read (signed &x) {
for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;
for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
}
inline void read (long long &x) {
for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;
for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
}
inline void read (char &x) {
x=gc();
}
inline void read(char *x){
while((*x=gc())=='\n' || *x==' '||*x=='\r');
while(!(*x=='\n'||*x==' '||*x=='\r'))*(++x)=gc();
}
template<typename A,typename ...B>
inline void read(A &x,B &...y){
read(x);read(y...);
}
// print a signed integer
inline void write (signed x) {
if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
while (x) qu[++ qr] = x % 10 + '0', x /= 10;
while (qr) putc (qu[qr --]);
}
inline void write (long long x) {
if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
while (x) qu[++ qr] = x % 10 + '0', x /= 10;
while (qr) putc (qu[qr --]);
}
inline void write (char x) {
putc(x);
}
inline void write(const char *x){
while(*x){putc(*x);++x;}
}
inline void write(char *x){
while(*x){putc(*x);++x;}
}
template<typename A,typename ...B>
inline void write(A x,B ...y){
write(x);write(y...);
}
//no need to call flush at the end manually!
struct Flusher_ {~Flusher_(){flush();}}io_flusher_;
}
using io :: read;
using io :: putc;
using io :: write;
int a[500005],p[500005];
struct smt{
int ls,rs,mx;
smt *l,*r;
smt(int la,int ra){
ls=la;rs=ra;
mx=0;
if(la==ra){
l=r=0;
}
else{
int mid=(ls+rs)>>1;
l=new smt(ls,mid);
r=new smt(mid+1,rs);
}
}
int query(int la,int ra){
if(la<=ls && rs<=ra)return mx;
int mx=0;
if(la<=l->rs)chkmax(mx,l->query(la,ra));
if(r->ls<=ra)chkmax(mx,r->query(la,ra));
return mx;
}
void upd(int x,int y){
mx=y;
if(ls==rs)return;
if(x<=l->rs)l->upd(x,y);
else r->upd(x,y);
}
};
smt *rt;
int ind[500005],c[500005];
vector<int> to[500005];
priority_queue<pii> pq;
int main(){
#ifdef cnyali_lk
freopen("f.in","r",stdin);
freopen("f.out","w",stdout);
#endif
int n,k,x;
read(n,k);
for(int i=1;i<=n;++i){
read(a[i]);
p[a[i]]=i;
}
rt=new smt(1,n);
for(int i=1;i<=n;++i){
to[i].push_back(x=rt->query(p[i]-k+1,p[i]));++ind[x];
to[i].push_back(x=rt->query(p[i],p[i]+k-1));++ind[x];
rt->upd(p[i],i);
}
for(int i=1;i<=n;++i)if(!ind[i])pq.push(make_pair(p[i],i));
int t=n+1;
while(!pq.empty()){
c[--t]=pq.top().x;
int x=pq.top().y;
pq.pop();
for(auto i:to[x]){
if(!--ind[i]){
pq.push(make_pair(p[i],i));
}
}
}
for(int i=1;i<=n;++i)a[i]=i;
sort(a+1,a+n+1,cmp_a<c>);
for(int i=1;i<=n;++i)printf("%d\n",a[i]);
return 0;
}