CTS2019 珍珠

link

\[ \begin{align} ans&=\frac{\sum_{i=0}^k \binom{d}{i}(e^x+e^{-x})^{d-i}(e^x-e^{-x})^i}{2^d}[x^n]\\ &=\frac{e^{-dx}\sum_{i=0}^k \binom{d}{i}(e^{2x}+1)^{d-i}(e^{2x}-1)^i}{2^d}[x^n] \end{align}\\ y=e^{2x}\\ F(y)=\sum_{i=0}^k\binom{d}{i}(y+1)^{d-i}(y-1)^i\\ ans=\sum_{i}(2i-d)^nF(y)[y^i]\\ F(y)=(y+1)^d\sum_{i=0}^k\binom{d}{i}(\frac{y-1}{y+1})^i\\ G(x)=\sum_{i=0}^k\binom{d}{i}x^i\\ F(y)=(y+1)^dG(1-\frac{2}{y+1})\\ H(x)=G(1-2x)\\ h_i=\sum_{j}\binom{j}{i}\binom{d}{j}=\sum_j\frac{j!d!}{i!(j-i)!j!(d-j)!}=\frac{d!}{i!}\sum_j\frac{1}{(j-i)!(d-j)!}=\frac{d!}{i!}\sum_x\\ F(y)=(y+1)^dH(\frac{1}{y+1})\\ \frac{1}{y+1}=\sum_{i}(-x)^i\\ (\frac{1}{y+1})^k=\sum_{i}\binom{i+k-1}{k-1}(-y)^i\\ \] \[ \begin{align} H(\frac{1}{y+1})&=\sum_{j}(-y)^j\sum_i\binom{i+j-1}{i-1}h_i\\ &=\sum_{j}\frac{(-y)^j}{j!}\sum_i(i+j-1)!\frac{h_i}{(i-1)!}\\ \end{align} \] 然后可以NTT

/*
Author: QAQ Automaton
Lang: C++
Prog: pearl.cpp
Mail: lk@qaq-am.com
Blog: https://www.qaq-am.com/
*/
#include<bits/stdc++.h>
#define int long long
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define DEBUG printf("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define Debug debug("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define all(x) x.begin(),x.end()
#define x first
#define y second
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const double eps=1e-8;
const double pi=acos(-1.0);
template<class T>int chkmin(T &a,T b){return a>b?a=b,1:0;}
template<class T>int chkmax(T &a,T b){return a<b?a=b,1:0;}
template<class T>T sqr(T a){return a*a;}
template<class T>T mmin(T a,T b){return a<b?a:b;}
template<class T>T mmax(T a,T b){return a>b?a:b;}
template<class T>T aabs(T a){return a<0?-a:a;}
template<class T>int dcmp(T a,T b){return a>b;}
template<int *a>int cmp_a(int x,int y){return a[x]<a[y];}
#define min mmin
#define max mmax
#define abs aabs
namespace io {
	const int SIZE = (1 << 21) + 1;
	char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1, c, qu[55]; int f, qr;
	// getchar
	#define gc() (iS == iT ? (iT = (iS = ibuf) + fread (ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
	// print the remaining part
	inline void flush () {
		fwrite (obuf, 1, oS - obuf, stdout);
		oS = obuf;
	}
	// putchar
	inline void putc (char x) {
		*oS ++ = x;
		if (oS == oT) flush ();
	}
	// input a signed integer
	inline bool read (signed &x) {
		for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;else if(c==EOF)return 0;
		for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
		return 1;
	}

	inline bool read (long long &x) {
		for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;else if(c==EOF)return 0;
		for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
		return 1;
	}
	inline bool read (char &x) {
		x=gc();
		return x!=EOF;
	}
	inline bool read(char *x){
		while((*x=gc())=='\n' || *x==' '||*x=='\r')if(*x==EOF)return 0;
		while(!(*x=='\n'||*x==' '||*x=='\r'||*x==EOF))*(++x)=gc();
		*x=0;
		return 1;
	}
	template<typename A,typename ...B>
	inline bool read(A &x,B &...y){
		return read(x)&&read(y...);
	}
	// print a signed integer
	inline bool write (signed x) {
		if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
		while (x) qu[++ qr] = x % 10 + '0',  x /= 10;
		while (qr) putc (qu[qr --]);
		return 0;
	}

	inline bool write (long long x) {
		if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
		while (x) qu[++ qr] = x % 10 + '0',  x /= 10;
		while (qr) putc (qu[qr --]);
		return 0;
	}
	inline bool write (char x) {
		putc(x);
		return 0;
	}
	inline bool write(const char *x){
		while(*x){putc(*x);++x;}
		return 0;
	}
	inline bool write(char *x){
		while(*x){putc(*x);++x;}
		return 0;
	}
	template<typename A,typename ...B>
	inline bool write(A x,B ...y){
		return write(x)||write(y...);
	}
	//no need to call flush at the end manually!
	struct Flusher_ {~Flusher_(){flush();}}io_flusher_;
}
using io :: read;
using io :: putc;
using io :: write;
int inf;
struct _init_{
    _init_(){
        memset(&inf,0x3f,sizeof(inf));
    }
};
const int p=998244353,yg=3,ig=332748118;
const int N=1<<18,M=N|5;
int fac[200005],inv[200005],invf[200005];
int fpm(int a,int b){
	if(a<0)a+=p;
	int c=1;
	for(;b;b>>=1,a=a*a%p)if(b&1)c=c*a%p;
	return c;
}
int rev[M],f[M],g[M],h[M],s[M],t[M];
void NTT(int *a,int n,int flg){
	for(int i=1;i<n;++i){
		rev[i]=(rev[i>>1]>>1)|((i&1)*(n>>1));
		if(i<rev[i])swap(a[i],a[rev[i]]);
	}	
	for(int i=1;i<n;i<<=1){
		int w=fpm(flg==1?yg:ig,(p-1)/(i<<1)),ww;
		for(int j=0;j<n;j+=i+i){
			ww=1;
			for(int k=0;k<i;++k){
				int u=a[j+k],v=a[j+k+i];
				a[j+k]=(u+ww*v)%p;
				a[j+k+i]=((u-ww*v)%p+p)%p;
				ww=ww*w%p;
			}
		}
	}
	if(flg==-1){
		int w=fpm(n,p-2)%p;
		for(int i=0;i<n;++i)a[i]=a[i]*w%p;
	}
}
int C(int a,int b){return fac[a]*invf[b]%p*invf[a-b]%p;}
signed main(){
#ifdef QAQAutoMaton 
	freopen("pearl.in","r",stdin);
	freopen("pearl.out","w",stdout);
#endif
	int d,n,m;
	read(d,n,m);
	if(n-m*2<0)return write("0\n");
	int XD=d*2+5;
	fac[0]=fac[1]=inv[1]=invf[0]=invf[1]=1;
	for(int i=2;i<=XD;++i){
		fac[i]=fac[i-1]*i%p;
		inv[i]=(p-p/i)*inv[p%i]%p;
		invf[i]=inv[i]*invf[i-1]%p;
	}
	int w=min(n-m*2,d);
	for(int i=0;i<=w;++i){
		h[d-i]=invf[d-i];
	}
	for(int i=0;i<=d;++i)g[i]=invf[i];
	NTT(h,N,1);
	NTT(g,N,1);
	for(int i=0;i<N;++i){g[i]=g[i]*h[i]%p;h[i]=0;}
	NTT(g,N,-1);
	int x=1;
	for(int i=0;i<=w;++i){
		h[i]=g[d-i]*fac[d]%p*invf[i]%p*x%p;
		x=x*(p-2)%p;
	}
	for(int i=0;i<N;++i)g[i]=0;
	int i2=fpm(2,p-2)%p;
	for(int i=0;i<=w;++i)s[0]=(s[0]+h[i])%p;
	h[0]=0;
	for(int i=1;i<=w+1;++i){h[i]=h[i]*invf[i-1]%p;}
	for(int i=1;i<=XD;++i)g[XD-i]=fac[i-1];
	NTT(h,N,1);
	NTT(g,N,1);
	for(int i=0;i<N;++i)f[i]=h[i]*g[i]%p;
	NTT(f,N,-1);
	
	int ans=0;
	t[0]=1;
	for(int i=1;i<=d;++i){
		s[i]=f[XD-i]%p*invf[i]%p*(i&1?p-1:1)%p;
		t[i]=C(d,i);
	}
	NTT(s,N,1);
	NTT(t,N,1);
	for(int i=0;i<N;++i)f[i]=s[i]*t[i]%p;
	NTT(f,N,-1);
	for(int i=0;i<=d;++i){
		ans=(ans+fpm(i+i-d,n)*f[i])%p;
	}
	ans=ans*fpm(i2,d)%p;
	write(ans,'\n');
	return 0;
}