HNOI2018 转盘

link

结论:一定存在某种最优方案满足先在起点停留一段时间,然后开始走一圈。否则一定能转化。

把序列复制一份在后面。枚举起点\(s\),那么答案就是\(\min\limits_{s\le n}(\max\limits_{i=0}^{n-1}(a_{i+s}-i)+n-1)\)

\(w_i=a_i-i\),则答案就变成了\(\min\limits_{s\le n}(s+\max\limits_{i=0}^{n-1}w_{i+s})+n-1\)

因为\(w_{i+n}=w_i-n\),所以取max把\(w_{s+n}\)及之后的加上没有影响。

答案就是\(\min\limits_{s\le n}(s+\max\limits_{s\le i}w_{i})+n-1\)

然后就是类似于楼房重建这样维护。

时间复杂度\(O((n+m)\log ^2n)\)

/*
Author: CNYALI_LK
LANG: C++
PROG: 4425.cpp
Mail: cnyalilk@vip.qq.com
*/
#include<bits/stdc++.h>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define DEBUG printf("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define Debug debug("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define all(x) x.begin(),x.end()
#define x first
#define y second
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const signed inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1.0);
template<class T>int chkmin(T &a,T b){return a>b?a=b,1:0;}
template<class T>int chkmax(T &a,T b){return a<b?a=b,1:0;}
template<class T>T sqr(T a){return a*a;}
template<class T>T mmin(T a,T b){return a<b?a:b;}
template<class T>T mmax(T a,T b){return a>b?a:b;}
template<class T>T aabs(T a){return a<0?-a:a;}
template<class T>int dcmp(T a,T b){return a>b;}
template<int *a>int cmp_a(int x,int y){return a[x]<a[y];}
#define min mmin
#define max mmax
#define abs aabs
namespace io {
	const int SIZE = (1 << 21) + 1;
	char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1, c, qu[55]; int f, qr;
	// getchar
	#define gc() (iS == iT ? (iT = (iS = ibuf) + fread (ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
	// print the remaining part
	inline void flush () {
		fwrite (obuf, 1, oS - obuf, stdout);
		oS = obuf;
	}
	// putchar
	inline void putc (char x) {
		*oS ++ = x;
		if (oS == oT) flush ();
	}
	// input a signed integer
	inline void read (signed &x) {
		for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;
		for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
	}

	inline void read (long long &x) {
		for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;
		for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
	}
	inline void read (char &x) {
		x=gc();
	}
	inline void read(char *x){
		while((*x=gc())=='\n' || *x==' '||*x=='\r');
		while(!(*x=='\n'||*x==' '||*x=='\r'))*(++x)=gc();
	}
	template<typename A,typename ...B>
	inline void read(A &x,B &...y){
		read(x);read(y...);
	}
	// print a signed integer
	inline void write (signed x) {
		if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
		while (x) qu[++ qr] = x % 10 + '0',  x /= 10;
		while (qr) putc (qu[qr --]);
	}

	inline void write (long long x) {
		if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
		while (x) qu[++ qr] = x % 10 + '0',  x /= 10;
		while (qr) putc (qu[qr --]);
	}
	inline void write (char x) {
		putc(x);
	}
	inline void write(const char *x){
		while(*x){putc(*x);++x;}
	}
	inline void write(char *x){
		while(*x){putc(*x);++x;}
	}
	template<typename A,typename ...B>
	inline void write(A x,B ...y){
		write(x);write(y...);
	}
	//no need to call flush at the end manually!
	struct Flusher_ {~Flusher_(){flush();}}io_flusher_;
}
using io :: read;
using io :: putc;
using io :: write;
int n,m,p,a[200005],lsa;
struct smt{
	int ans,ansall,mx;	
	int ls,rs;
	smt *l,*r;
	int calc(int xmx){
		if(ls==rs)return ls+max(mx,xmx);
		if(xmx>r->mx)return min(l->calc(xmx),r->ls+xmx);
		else return min(r->calc(xmx),ans);
	}
	void push_up(){
		mx=max(l->mx,r->mx);
		ans=l->calc(r->mx);
		ansall=min(ans,r->ansall);
	}
	smt(int la,int ra){
		ls=la;rs=ra;
		if(ls==rs){
			mx=a[ls];
			ans=ansall=a[ls]+ls;
		}
		else{
			int mid=(ls+rs)>>1;
			l=new smt(ls,mid);
			r=new smt(mid+1,rs);
			push_up();
		}
	}
	void update(int x,int y){
		if(ls==rs){mx=y;ans=ansall=x+y;}
		else{
			if(x<=l->rs)l->update(x,y);	
			else r->update(x,y);
			push_up();
		}
//		write("...",ls,' ',rs,':',ans,',',ansall,'\n');
	}	
};
smt *r;
int main(){
#ifdef cnyali_lk
	freopen("4425.in","r",stdin);
	freopen("4425.out","w",stdout);
#endif
	read(n,m,p);
	for(int i=1;i<=n;++i){read(a[i]);a[i]-=i;a[i+n]=a[i]-n;}
	r=new smt(1,2*n);
	write(lsa=r->ans+n-1,'\n');
	int x,y;
	for(;m;--m){
		read(x,y);
		if(p){x^=lsa;y^=lsa;}
		a[x]=y-x;a[x+n]=a[x]-n;
		r->update(x,a[x]);
		r->update(x+n,a[x+n]);
//		for(int i=1;i<=n+n;++i)write(a[i],i==n+n?'\n':' ');
//		write(r->ans,' ',r->ansall,'\n');
		write(lsa=r->ans+n-1,'\n');
	}
	return 0;
}