Miller_Rabin--大素数判定算法
一篇很好的Miller_Rabin讲解博客
费马小定理:对于一个素数
当然2要特判。 每次判断错误率为
long long x;
long long f[128];
long long bigrand(long long l,long long r){
return (((long long)rand()<<31)+rand())%(r-l+1)+l;
}
long long mul(long long a,long long b,long long p){
long long c=0;
while(b){
if(b&1)c=(c+a)%p;
a=(a+a)%p;
b>>=1;
}
return c;
}
long long fpm(long long a,long long b,long long p){
long long c=1;
while(b){
if(b&1)c=mul(c,a,p);
a=mul(a,a,p);
b>>=1;
}
return c;
}
long long Miller_Rabin(long long x){
long long y=x-1,t=0;
if(x==2)return 1;
while(!(y&1)){y>>=1;++t;}
up(i,1,128){
long long k=bigrand(2,x-1);
f[0]=fpm(k,y,x);
up(j,1,t){
f[j]=mul(f[j-1],f[j-1],x);
if(f[j]==1&&f[j-1]!=1&&f[j-1]!=x-1){
return 0;
}
}
if(f[t]!=1)return 0;
}
return 1;
}
int main(){
long long n;
srand(2333);
n=read();
while(n){
--n;
x=read();
if(Miller_Rabin(x)){
printf("Yes\n");
}
else printf("No\n");
}
return 0;
}