NOI2019 斗主地

link ### 题解 发现随机归并后每种可能的状态概率是一样的。

把操作反着看,发现相当于每次等概率随机一些牌放到最前面。

对于type=1,答案相当于第i张卡做完第m..1次随机,在它前面的卡数期望+1,相当于每张卡经过m次随机在它前面的概率和+1

于是我们可以只考虑一张卡在它前面或者在它后面。

那么f[x][0/1]表示顺序做完第m..x次随机,某张卡在它前面/后面,最后在它前面的概率。

对于type=1,答案相当于在它前面的(卡数平方+2卡数)期望+1,也就相当于\(2\times\)每对卡(无先后顺序)经过m次随机都在它前面的概率和+\(3\times\) 每张卡经过m次随机在它前面的概率和+1

再记g[x][0/1/2]表示顺序做完第m..x次随机,某对卡都在它前面/一张在前一张在后/都在它后面,最后都在它前面的概率。

/*
Author: QAQ Automaton
Lang: C++
Prog: landlords.cpp
Mail: lk@qaq-am.com
Blog: https://www.qaq-am.com/
*/
#include<bits/stdc++.h>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define DEBUG printf("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define Debug debug("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define all(x) x.begin(),x.end()
#define x first
#define y second
#define int long long
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
#define inf 0x3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f
const double eps=1e-8;
const double pi=acos(-1.0);
template<class T>int chkmin(T &a,T b){return a>b?a=b,1:0;}
template<class T>int chkmax(T &a,T b){return a<b?a=b,1:0;}
template<class T>T sqr(T a){return a*a;}
template<class T>T mmin(T a,T b){return a<b?a:b;}
template<class T>T mmax(T a,T b){return a>b?a:b;}
template<class T>T aabs(T a){return a<0?-a:a;}
template<class T>int dcmp(T a,T b){return a>b;}
template<int *a>int cmp_a(int x,int y){return a[x]<a[y];}
#define min mmin
#define max mmax
#define abs aabs
namespace io {
	const int SIZE = (1 << 21) + 1;
	char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1, c, qu[55]; int f, qr;
	// getchar
#define gc() (iS == iT ? (iT = (iS = ibuf) + fread (ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
	// print the remaining part
	inline void flush () {
		fwrite (obuf, 1, oS - obuf, stdout);
		oS = obuf;
	}
	// putchar
	inline void putc (char x) {
		*oS ++ = x;
		if (oS == oT) flush ();
	}
	// input a signed integer
	inline bool read (signed &x) {
		for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;else if(c==EOF)return 0;
		for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
		return 1;
	}

	inline bool read (long long &x) {
		for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;else if(c==EOF)return 0;
		for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
		return 1;
	}
	inline bool read (char &x) {
		x=gc();
		return x!=EOF;
	}
	inline bool read(char *x){
		while((*x=gc())=='\n' || *x==' '||*x=='\r')if(*x==EOF)return 0;
		while(!(*x=='\n'||*x==' '||*x=='\r'))*(++x)=gc();
		*x=0;
		return 1;
	}
	template<typename A,typename ...B>
		inline bool read(A &x,B &...y){
			return read(x)&&read(y...);
		}
	// print a signed integer
	inline bool write (signed x) {
		if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
		while (x) qu[++ qr] = x % 10 + '0',  x /= 10;
		while (qr) putc (qu[qr --]);
		return 0;
	}

	inline bool write (long long x) {
		if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
		while (x) qu[++ qr] = x % 10 + '0',  x /= 10;
		while (qr) putc (qu[qr --]);
		return 0;
	}
	inline bool write (char x) {
		putc(x);
		return 0;
	}
	inline bool write(const char *x){
		while(*x){putc(*x);++x;}
		return 0;
	}
	inline bool write(char *x){
		while(*x){putc(*x);++x;}
		return 0;
	}
	template<typename A,typename ...B>
		inline bool write(A x,B ...y){
			return write(x)||write(y...);
		}
	//no need to call flush at the end manually!
	struct Flusher_ {~Flusher_(){flush();}}io_flusher_;
}
using io :: read;
using io :: putc;
using io :: write;
int a[105],b[105];
int fac[10000005],inv[10000005],invf[10000005]; const int p=998244353;
int down(int a,int b){return b<0||a<b?0:fac[a]*invf[a-b]%p;}
int C(int a,int b){return b<0||a<b?0:fac[a]*invf[a-b]%p*invf[b]%p;}
int fpm(int a,int b){
	int c=1;
	for(;b;b>>=1,a=a*a%p)if(b&1)c=c*a%p;
	return c;
}
int n,m,type;
int f[500005][2],g[500005][3];
signed main(){
	freopen("landlords.in","r",stdin);
	freopen("landlords.out","w",stdout);
	read(n,m,type);
	fac[0]=fac[1]=inv[1]=invf[0]=invf[1]=1;
	for(int i=2;i<=n;++i){
		fac[i]=fac[i-1]*i%p;
		inv[i]=(p-p/i)*inv[p%i]%p;
		invf[i]=inv[i]*invf[i-1]%p;
	}
	if(type==1){
		f[0][0]=1;
		f[0][1]=0;
		for(int i=1;i<=m;++i){
			int x;
			read(x);
			int w=C(n-2,x-1)*fpm(C(n,x),p-2)%p;
			f[i][0]=(f[i-1][0]*(p+1-w)+f[i-1][1]*w)%p;
			f[i][1]=(f[i-1][0]*w+f[i-1][1]*(p+1-w))%p;
		}
	}
	else{
		f[0][0]=1;
		f[0][1]=0;
		g[0][0]=1;
		g[0][1]=g[0][2]=0;
		for(int i=1;i<=m;++i){
			int x;
			read(x);
			int qaq=fpm(C(n,x),p-2);
			int w=C(n-2,x-1)*qaq%p;
			f[i][0]=(f[i-1][0]*(p+1-w)+f[i-1][1]*w)%p;
			f[i][1]=(f[i-1][0]*w+f[i-1][1]*(p+1-w))%p;
			int c0=C(n-3,x)*qaq%p,c1=C(n-3,x-1)*qaq%p,c2=C(n-3,x-2)*qaq%p,c3=C(n-3,x-3)*qaq%p;
			g[i][0]=((c0+c1+c1+c2+c3)*g[i-1][0]+(c2+c2)*g[i-1][1]+(c1)*g[i-1][2])%p;
			g[i][1]=((c1+c2)*g[i-1][0]+(c0+c1+c2+c3)*g[i-1][1]+(c1+c2)*g[i-1][2])%p;
			g[i][2]=((c2)*g[i-1][0]+(c1+c1)*g[i-1][1]+(c0+c1+c2+c2+c3)*g[i-1][2])%p;
		}
	}
	int q;
	read(q);
	for(;q;--q){
		int x;
		read(x);
		if(type==1)write(((x-1)*f[m][0]+(n-x)*f[m][1]+1)%p,'\n');
		else{
			write((1+3*f[m][0]*(x-1)+3*f[m][1]*(n-x)+(x-1)*(x-2)%p*g[m][0]+2*(x-1)*(n-x)%p*g[m][1]+(n-x)*(n-x-1)%p*g[m][2])%p,'\n');
		}
	}
	return 0;
}