CometOJ Round #11 F

题意

给定一张n点m边的图,每条边\((u,v)\)\(\frac{1}{3}\)的概率\(u\)指向\(v\),有\(\frac{1}{3}\)的概率从\(v\)指向\(u\),还有\(\frac{1}{3}\)的概率消失,求这张图是DAG的概率。

\(n\le 20,4s\)

题解

显然可以转化求为每条边可以u指v,可以v指u,可以消失,最后成DAG的方案数。

\(f_S\)\(S\)中形成DAG的概率。

枚举S中入度为0的点集T(\(T\not=\varnothing\)),显然一个入度为零的点集会被每个非空子集算一次。

凑系数\(a_{|T|}\)满足\(\sum_{i=1}^{|T|} \binom{|T|}{i}a_{i}=1\),发现\(a_{|T|}=(-1)^{|T|-1}\)

那么\(f_S=\sum_{T\subset S,T\not=\varnothing}f_{S-T}2^{e_{T,S-T}}\),其中\(e_{T,S-T}\)表示\(T\)\(S-T\)的边数,也就是\(e_S-e_T-e_{S-T}\)其中\(e_S\)\(S\)内部的边数。那么\(2^{e_{T,S-T}}=\frac{2^{e_S}}{2^{e_T}2^{e_{S-T}}}\)

\[\frac{f_S}{2^{e_S}}=\sum_{T\subset S,T\not=\varnothing}\frac{f_{S-T}}{2^{e_{S-T}}}\frac{(-1)^{|T|-1}}{2^{e_T}}\]

可以子集卷积。

注意:子集卷积中,集合并卷积时有可能\(f_{s,|S|}\)\(s\lt |S|\),但是这样对答案没有影响,不需要iFMT一下消除这些项。

/*
Author: QAQ Automaton
Lang: C++
Prog: F.cpp
Mail: lk@qaq-am.com
Blog: https://www.qaq-am.com/
*/
#include<bits/stdc++.h>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define DEBUG printf("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define Debug debug("Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#define all(x) x.begin(),x.end()
#define x first
#define y second
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const double eps=1e-8;
const double pi=acos(-1.0);
template<class T>int chkmin(T &a,T b){return a>b?a=b,1:0;}
template<class T>int chkmax(T &a,T b){return a<b?a=b,1:0;}
template<class T>T sqr(T a){return a*a;}
template<class T>T mmin(T a,T b){return a<b?a:b;}
template<class T>T mmax(T a,T b){return a>b?a:b;}
template<class T>T aabs(T a){return a<0?-a:a;}
template<class T>int dcmp(T a,T b){return a>b;}
template<int *a>int cmp_a(int x,int y){return a[x]<a[y];}
#define min mmin
#define max mmax
#define abs aabs
namespace io {
	const int SIZE = (1 << 21) + 1;
	char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1, c, qu[55]; int f, qr;
	// getchar
	#define gc() (iS == iT ? (iT = (iS = ibuf) + fread (ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
	// print the remaining part
	inline void flush () {
		fwrite (obuf, 1, oS - obuf, stdout);
		oS = obuf;
	}
	// putchar
	inline void putc (char x) {
		*oS ++ = x;
		if (oS == oT) flush ();
	}
	// input a signed integer
	inline bool read (signed &x) {
		for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;else if(c==EOF)return 0;
		for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
		return 1;
	}

	inline bool read (long long &x) {
		for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;else if(c==EOF)return 0;
		for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
		return 1;
	}
	inline bool read (char &x) {
		x=gc();
		return x!=EOF;
	}
	inline bool read(char *x){
		while((*x=gc())=='\n' || *x==' '||*x=='\r')if(*x==EOF)return 0;
		while(!(*x=='\n'||*x==' '||*x=='\r'||*x==EOF))*(++x)=gc();
		*x=0;
		return 1;
	}
	template<typename A,typename ...B>
	inline bool read(A &x,B &...y){
		return read(x)&&read(y...);
	}
	// print a signed integer
	inline bool write (signed x) {
		if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
		while (x) qu[++ qr] = x % 10 + '0',  x /= 10;
		while (qr) putc (qu[qr --]);
		return 0;
	}

	inline bool write (long long x) {
		if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
		while (x) qu[++ qr] = x % 10 + '0',  x /= 10;
		while (qr) putc (qu[qr --]);
		return 0;
	}
	inline bool write (char x) {
		putc(x);
		return 0;
	}
	inline bool write(const char *x){
		while(*x){putc(*x);++x;}
		return 0;
	}
	inline bool write(char *x){
		while(*x){putc(*x);++x;}
		return 0;
	}
	template<typename A,typename ...B>
	inline bool write(A x,B ...y){
		return write(x)||write(y...);
	}
	//no need to call flush at the end manually!
	struct Flusher_ {~Flusher_(){flush();}}io_flusher_;
}
using io :: read;
using io :: putc;
using io :: write;
int inf;
struct _init_{
    _init_(){
        memset(&inf,0x3f,sizeof(inf));
    }
};
_init_ ___INIT__;
int e[1<<20];
int t[20];
int is[1<<20];
const int p=998244353,i2=(p+1)>>1,i3=(p+1)/3;
int p2[405],p3[405];
int f[21][1<<20],g[21][1<<20],pc[1<<20];
void FMT(int *f,int n){
	for(int i=1;i<n;i<<=1)
		for(int j=0;j<n;++j)if(!(j&i))f[j|i]=(f[j|i]+f[j])%p;
}
void iFMT(int *f,int n){
	for(int i=1;i<n;i<<=1)
		for(int j=0;j<n;++j)if(!(j&i))f[j|i]=(f[j|i]+p-f[j])%p;
}
signed main(){
#ifdef QAQAutoMaton 
	freopen("F.in","r",stdin);
	freopen("F.out","w",stdout);
#endif
	int n,m,u,v;
	read(n,m);
	p2[0]=p3[0]=1;
	for(int i=1;i<=m;++i){
		p2[i]=(ll)p2[i-1]*i2%p;
		p3[i]=(ll)p3[i-1]*2*i3%p;
	}
	for(int i=1;i<=m;++i){
		read(u,v);
		--u;--v;
		t[u]|=1<<v;
		t[v]|=1<<u;
	}
	for(int i=0;i<n;++i)is[1<<i]=i;
	for(int i=1;i<1<<n;++i)pc[i]=pc[i&(i-1)]+1;
	for(int i=1;i<1<<n;++i){
		e[i]=e[i&(i-1)]+pc[t[is[i&(-i)]]&i];
	}
	for(int i=1;i<1<<n;++i)g[pc[i]][i]=(ll)(pc[i]&1?1:p-1)*p2[e[i]]%p;
	for(int i=0;i<=n;++i)FMT(g[i],1<<n);
	f[0][0]=1;
	FMT(f[0],1<<n);
	for(int i=1;i<=n;++i){
		for(int j=0;j<i;++j)for(int k=0;k<1<<n;++k)f[i][k]=(f[i][k]+(ll)f[j][k]*g[i-j][k])%p;
	}
	iFMT(f[n],1<<n);

	write((ll)f[n][(1<<n)-1]*p3[m]%p,'\n');
/*	f[0]=1;
	for(int i=1;i<1<<n;++i)for(int j=i;j;j=(j-1)&i){
		f[i]=(f[i]+f[i-j]*(__builtin_popcount(j)&1?1:p-1)%p*p2[e[j]])%p;
	}
	write(f[(1<<n)-1]*p3[m]%p,'\n');*/
	return 0;
}